Relative contributions of the five major human cytochromes P450, 1A2, 2C9, 2C19, 2D6, and 3A4, to the hepatic metabolism of the proteasome inhibitor bortezomib.
نویسندگان
چکیده
VELCADE (bortezomib, PS-341), reversibly inhibits the 20S proteasome and exhibits cytotoxic and antitumor activities. Pretreatment of cancer cells with bortezomib increases the chemosensitivity of these cells, suggesting that bortezomib may be used in combination chemotherapy. The relative contributions of the five major human cytochromes P450 (P450s), 1A2, 2C9, 2C19, 2D6, and 3A4 (the focus of the present study), to the metabolism of bortezomib are an important aspect of potential drug interactions. Relative activity factor (RAF), chemical inhibition, and immunoinhibition using monoclonal antibodies were three approaches employed to determine the relative contributions of the major human P450s to the net hepatic metabolism of bortezomib. RAFs for the P450 isoform-selective substrates were determined; the ratio of the rate of metabolism of bortezomib with cDNA-expressed P450s versus rate of metabolism with human liver microsomes was normalized with respect to the RAF for each P450 isoform to determine the percentage contributions of the P450s to the net hepatic metabolism of bortezomib. CYP3A4 followed by CYP2C19 were determined to be the major contributors to the metabolism of bortezomib. Chemical inhibition and immunoinhibition confirmed that CYP3A4 and CYP2C19 were the major P450s responsible for the hepatic metabolism of bortezomib. The studies were conducted with 2 muM bortezomib, and the disappearance of bortezomib, rather than appearance of a specific metabolite, was quantified to determine the contributions of the P450s to the overall hepatic metabolism of bortezomib in humans.
منابع مشابه
Metabolism of clozapine by cDNA-expressed human cytochrome P450 enzymes.
The metabolism of clozapine was studied in vitro using cDNA-expressed human cytochrome P450 (CYP) enzymes 1A2, 3A4, 2C9, 2C19, 2D6, and 2E1. CYP1A2, 3A4, 2C9, 2C19, and 2D6 were able to N-demethylate clozapine. N-Oxide formation was exclusively catalyzed by CYP3A4. CYP2E1 did not metabolize clozapine. With regard to quantitative relationships, CYP1A2, 2C9, 2C19, and 2D6 displayed KM values rang...
متن کاملIn vitro sulfoxidation of thioether compounds by human cytochrome P450 and flavin-containing monooxygenase isoforms with particular reference to the CYP2C subfamily.
Cytochrome P450 (P450) and flavin-containing monooxygenase (FMO) enzymes are major catalysts involved in the metabolism of xenobiotics. The sulfoxidation of the thioether pesticides, phorate, disulfoton, sulprofos, and methiocarb, was investigated. Using pooled human liver microsomes (HLMs), thioether compounds displayed similar affinities; however, phorate and disulfoton displayed higher intri...
متن کاملEvaluation of the selectivity of In vitro probes and suitability of organic solvents for the measurement of human cytochrome P450 monooxygenase activities.
There is a need for methodology to predict clinically significant drug-drug interactions so that clinical studies can be directed toward interactions which are likely to be clinically relevant. To this end, we evaluated selective assays for the seven drug-metabolizing cytochrome P450 (P450) isozymes 1A2 (caffeine N3-demethylation), 2A6 (coumarin 7-hydroxylation), 2C9 (tolbutamide hydroxylation)...
متن کاملInvestigation of drug-drug interaction potential of bortezomib in vivo in female Sprague-Dawley rats and in vitro in human liver microsomes.
Bortezomib (Velcade, PS-341), a dipeptidyl boronic acid, is a first-in-class proteasome inhibitor approved in 2003 for the treatment of multiple myeloma. In a preclinical toxicology study, bortezomib-treated rats resulted in liver enlargement (35%). Ex vivo analyses of the liver samples showed an 18% decrease in cytochrome P450 (P450) content, a 60% increase in palmitoyl coenzyme A beta-oxidati...
متن کاملIs 1-aminobenzotriazole an appropriate in vitro tool as a nonspecific cytochrome P450 inactivator?
1-Aminobenzotriazole (1-ABT) is generally considered to be a nonselective mechanism-based inactivator of both human and non-human cytochrome P450 (P450) enzymes. Thus, 1-ABT is routinely used when conducting in vitro reaction phenotyping studies with new chemical entities in drug discovery to decipher P450 from non-P450-mediated metabolism. Experiments with pooled human liver microsomes (HLMs) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 33 11 شماره
صفحات -
تاریخ انتشار 2005